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Abstract

Marine debris poses a serious threat to marine ecosystems, necessitating efficient and reliable detection
methods to support large-scale monitoring and removal efforts. In this study, an underwater marine debris
object detection framework based on the YOLOv4 deep learning architecture is proposed. The Al-Hub
marine debris dataset was employed, comprising over 12,000 annotated underwater images. To improve
data quality and training consistency, extensive preprocessing was conducted, including label cleaning, class
unification, and conversion to YOLO-compatible annotation formats. Experimental results demonstrate that
the pretrained YOLOv4 model achieves a mean Average Precision (mAP) of 88.9% and average 2.1ms/img,
making it suitable for low-end GPU environments. YOLOv4 can be effectively adapted for real-time
underwater marine debris detection while maintaining high detection accuracy, offering a practical solution
for deployment in resource-constrained environments.
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Introduction

Environmental pollution has long been recognized as a significant global concern, largely driven by the
accumulation of waste, which represents the residual materials generated and discarded through human
activities. Unmanaged waste results from factors such as inadequate landfill infrastructure and limited waste
processing capacity, leading to its dispersal into terrestrial and aquatic environments. Waste that is
discarded or abandoned in marine environments, regardless of intent, is defined as marine debris [1]. Marine
debris encompasses biologically non-degradable solids, manufactured or processed products, originating
from diverse sources such as fishing activities, beach tourism, industrial waste, and improper garbage
disposal on land. Marine debris is mainly classified into plastic, metal, glass, rubber, and organic materials. It
has been estimated that approximately 14 billion tons of waste enter the ocean annually [2]. Among them,
plastic waste dominates as the most prevalent type, constituting around 60-80 percent of total marine
debris.

Recently, robotics and artificial intelligence (AI) play critical roles across a wide range of research domains.
In underwater research, robotic systems are indispensable for observing environments that are difficult or
hazardous for humans to access, including shallow waters, subsea pipeline leak detection, and other
constrained conditions. Autonomous Underwater Vehicles (AUVs), equipped with sensors such as side-scan
sonar, optical cameras, echosounders, Acoustic Doppler Current Profilers (ADCPs), and Conductivity-
Temperature-Depth (CTD) sensors, have proven to be highly effective platforms for underwater observation
and data acquisition [3]. As unmanned systems, AUVs operate autonomously under computer-based control,
enabling sustained and reliable monitoring without direct human intervention [4].

One of central research areas in Al is computer vision, which focuses on developing algorithms capable of
interpreting and extracting meaningful information from images and videos in a manner analogous to
human visual perception. Computer vision encompasses a broad range of technologies, including digital
image processing, pattern recognition, and data analysis techniques based on machine learning and deep
learning frameworks [5]. Among its core tasks, object detection aims to identify both the presence and
spatial locations of specific objects within images or video streams. A fundamental task of object detection
within computer vision has advanced rapidly since the introduction of Region-based Convolutional Neural
Networks (R-CNNs) in 2014 [6].
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In robotic detection of marine litter using deep visual detection models, Fulton et al. [7] introduced a marine
litter detection dataset and reported that YOLOvZ has a mean average precision (mAP) of 47.9% with a
processing speed of 205 frames per second (FPS) on a GTX 1080Ti. Yang et al. [8] evaluated YOLOv3 on the
same dataset in Fulton et al. [7] and reported mAP of 76.1%, a recall of 75.6%, and a frame rate of 20 FPS.
The study also compared YOLOv3 with Faster R-CNN, analyzing performance differences in accuracy and
speed. Tata et al. [9] introduced the open-source DeepTrash dataset for marine plastic detection and
employed four models: SSD, Faster R-CNN, YOLOv4-tiny, and YOLOv5s. YOLOv5s achieved the highest mAP
(85%), while YOLOv4-tiny exhibited the fastest inference time (1.2ms/img). Majchrowska et al. [10]
investigated large-scale environmental waste detection using multiple datasets and reported mAP of 7.3%
on the Trash-ICRA 2019 dataset with EfficientDet-D2 model using the EfficientNet-B2 backbone.
Performance degradation was attributed to poor image quality, while dataset combination with weighted
sampling improved final accuracy to 73.02%. Tian et al. [11] introduced a pruning-based YOLOv4 method for
underwater garbage detection. While the original YOLOv4 achieved 91.3% mAP at 43.4 FPS, the pruned
model attained 90.3% mAP with an increased speed of 58.82 FPS. Recently, Sadnchez-Ferrer et al. [12]
evaluated Mask R-CNN for underwater debris detection and segmentation using combined CleanSea and
JAMSTEC datasets. While the inclusion of synthetic data yielded an mAP50 of 52.1%, training without
synthetic data improved performance to 61.0%.

Methodology

In this work, we perform object detection of marine debris using image processing and computer vision,
aiming to identify the presence and position of specific objects in images or videos using You Only Look Once
(YOLO) model. The YOLO model adopts a single-stage approach to object detection, offering an efficient and
streamlined detection paradigm. Object detection methods are generally classified into two categories:
single-stage detectors and two-stage detectors. Unlike two-stage detectors, which rely on a separate region
proposal step followed by classification, single-stage detectors perform object localization and classification
simultaneously within a single evaluation network. YOLO exemplifies this approach by using a unified neural
network, resulting in significantly faster inference speeds compared to conventional object detection
methods [13]. However, this architectural simplicity may lead to slightly reduced detection confidence
relative to two-stage detectors.

The detection process begins by transforming the input image into a 3D matrix. During training, the image is
divided into a grid, and each grid cell predicts multiple bounding boxes along with corresponding confidence
scores [14]. Bounding boxes with confidence values below a predefined threshold are discarded, while
remaining candidates are ranked according to their confidence scores. These candidates are subsequently
refined through the non-maximum suppression (NMS) procedure, which eliminates redundant and
overlapping bounding boxes to retain a single representative bounding box for each detected object [15].
The NMS process is governed by the Intersection over Union (IoU) metric, whereby the overlap between
bounding boxes is computed, and boxes exceeding a specified loU threshold are suppressed.

YOLOv4 represents a significant advancement over earlier YOLO architectures by providing flexibility in
backbone selection. When configured with CSPDarknet53 as the backbone, YOLOv4 demonstrates superior
performance in terms of both mAP and FPS compared to alternative backbones such as CSPResNeXt-50 and
EfficientNet-BO [16]. CSPDarknet53 is an enhanced version of Darknet-53, the original backbone of YOLOV3,
in which Cross Stage Partial Network (CSPNet) modules are integrated into residual blocks to improve
learning efficiency. Additionally, the activation functions are modified to incorporate both Mish and Leaky
ReLU activations [17]. The Mish activation function exhibits self-regularizing and non-monotonic
characteristics, producing smoother output distributions than the ReLU activation used in Darknet-53,
improving feature representation [18].

In the neck layer, YOLOv4 integrates Spatial Pyramid Pooling (SPP) and Path Aggregation Network (PANet)
modules. SPP integrates a max-pooling layer with three pooling sizes (5x5, 9x9, 13x1, 1x1). Although PANet
was originally developed for instance segmentation, its adaptation in YOLOv4 enables effective feature
fusion through bidirectional upsampling and downsampling across both low-level and high-level feature
maps [19]. The detection head of YOLOv4 closely follows the design of YOLOv3 and consists of three output
layers dedicated to multi-scale object detection. These outputs are responsible for detecting small-, medium-,
and large-scale objects, respectively [20]. In the backbone, CSPDarknet53 undertakes feature extraction on
the image, while the neck incorporates SPP, executing max-pooling with four different pool sizes (5x5, 9x9,
13x13, 1x1) [21]. Post-SPP, another neck component, PANet, enhances the feature map’s quality by
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performing upsampling and downsampling using both low-level and high-level feature maps, strengthening
multi-scale feature representation. The general architecture of YOLOv4 is illustrated in Figure 1.
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Figure 1. YOLOv4 architecture.

The Complete Intersection over Union (CloU) loss is a distinctive addition in YOLOv4 and is employed to
refine the calculation of lIoU scores. The formula of the CloU loss is given by

Leroy = 1= 10U + 202 + av, 1)
Where p denotes the Euclidean distance, b and b9t denote the central point of the predicted box and ground
truth box, respectively, and c is the length of the shortest enclosing box covering two boxes. Here, a is a

positive trade-off parameter and v measures the consistency of aspect ratio. The « is calculated as

v

a= (1-10)+V’ (2)

and v is calculated as
4 wit w2
v=— (arctan —g; — arctan ;) , (3)

Where w denotes the width, h denotes the height, and g; denotes the ground truth. The object confidence
loss and no object confidence loss use binary cross entropy to calculate the confidence prediction and
confidence ground truth. Confidence ground truth becomes 1 if object is included in the box, and 0,
otherwise. The formula of object confidence loss is defined as

. 2 i (~ ~
0bj =Xi_o Z?:O Iioij (Cz logC; + (1 = Clog (1 - Ci))’ (4)

Where s? is the total number of grid cells, B is the total number of bounding boxes. i is a specific cell location
of the grid, j is the bounding box accessed within the cell. C, denotes predicted confidence and C; is actual
confidence loss using binary cross entropy to calculate the class prediction that implement one-hot
encoding.

Igwb] is the function that becomes 1 if the cell i inside the j bounding box contain an object, and O,
otherwise, which is defined as

NoObj = 520177 S cectasses(C. log Ci + (1 — Clog (1 - ), (5)

Finally, classification rule is defined as

s? jobj

Class = i=0 Iij Zcealasses(ﬁl logpi + (1 - f’:)log (1 - pi)): (6)
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Where p, and p; are defined as predicted classification and actual classification for ith cell location,
respectively.

Dataset and Analysis

The dataset was obtained from Al-Hub, the Korea Al Data Platform (https://www.aihub.or.kr/), through its
official dataset catalog (https://wwwe.aihub.or.kr/aihubdata/data/list.do), and consists of underwater
images annotated in XML format. A total of 9,022 images were used for training and 3,008 images for
validation. Ambiguous object classes were removed, and semantically identical labels were unified to ensure
annotation consistency. All experiments were conducted using Google Colab with GPU acceleration. Image
data and annotations were stored on Google Drive and mounted during runtime. The model was trained
using default YOLOv4 hyper-parameters unless otherwise specified.

Table 1. Dataset statistics after preprocessing.
Dataset split Number of images Description
Training 9,022 Used for model learning
Validation 3,008 Used for performance evaluation

Figure 2 shows an example of some images containing marine debris including rope, fish traps and tires.
Using YOLOv4 model, Figure 3 presents the types of marine debris and their locations. Figure 3 shows that
YOLOv4 model accurately classifies the types and the locations of marine debris.

Figure 2. An example of marine debris.
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Figure 3. Classification and locating results of marine debris using YOLO model.

Discussion

Based on the experimental results obtained from the six evaluated schemes, it can be concluded that an
efficient YOLOv4-based model for marine debris object detection can be achieved. The proposed pruned
model attains a mean Average Precision (mAP) of 88.9%, while significantly improving inference speed to
average 2.1ms/img. Notably, this optimization increases the computing speed with only a marginal
reduction in detection accuracy.
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Sometimes, YOLOv4 model fails to accurately classify marine debris owing to poor image quality, and
bounding boxes exceeding image size. Bounding boxes that exceed the image boundaries are handled by
clipping their normalized parameters such that any value greater than 1 is capped at 1. An alternative
normalization strategy must be applied.

Conclusion

This study demonstrates the effectiveness of the YOLOv4-based object detection framework for underwater
marine debris detection. Through systematic evaluation of multiple training and optimization strategies, the
results confirm that YOLOv4 can achieve high detection accuracy while being adapted for real-time
performance. These results highlight the feasibility of deploying YOLOv4-based marine debris detection
systems in practical, resource-constrained settings, such as autonomous underwater vehicles and embedded
monitoring platforms.

Overall, this work provides a solid foundation for real-time, high-accuracy marine debris detection and
contributes to the advancement of Al-assisted marine environmental monitoring. Nevertheless, challenges
remain due to underwater image degradation, including poor visibility and inaccurate bounding box
annotations exceeding image boundaries. While this study mitigates such issues through bounding box
clipping and normalization, further refinement is required to enhance robustness under adverse imaging
conditions.
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